Article 16215

Title of the article

MATHEMATICAL MODELING OF TUNED THZ POLARIZERS BASED ON THE PERIODIC 2D STRUCTURES OF RECTANGULAR GRAPHENE NANORIBBONS

Authors

Makeeva Galina Stepanovna, Doctor of physical and mathematical sciences, professor, sub-department of radio engineering and radio electronic systems, Penza State University (40 Krasnaya street, Penza, Russia), radiotech@pnzgu.ru
Golovanov Oleg Aleksandrovich, Doctor of physical and mathematical sciences, professor, sub-department of general professional disciplines, Penza branch of the Military Academy of Maintenance Supplies (Penza-5, Russia), golovanovol@mail.ru
Varenitsa Vitaliy Viktorovich, Director of the department of code audit and certification, Research and production association “Eshelon” (24 Electrozavodskaya street, Moscow, Russia), v.varenitsa@cnpo.ru
Gorelov Roman Aleksandrovich, Lecturer, sub-department of radio engineering systems, Penza branch of the Military Academy of Maintenance Supplies (Penza-5, Russia), grelovr@mail.ru

Index UDK

535.32

Abstract

Background. Recent progress in the growth and patterning of graphene presents challenges and great opportunities for reconfigurable integrated plasmonic devices and metamaterials with potential applications for THz and IR polarizers and filters. The goal of the present work is the theoretical research of principals of creation of THz polarizers based on the periodic 2D structures of rectangular graphene nanoribbons, tuned by the external bias electric field, and their performances using rigorous mathematical modeling at electromagnetic accuracy level.
Materials and methods. The rigorous mathematical model of graphene nanoribbon-based THz devices, based on solutions of the 3D diffraction boundary problems for the full set of Maxwell equations with electrodynamic boundary conditions, simultaneously with model of the graphene surface conductivity expressed from Kubo formula were developed using the Galerkin’s projection method.
Results. Using the computational algorithm based on the decomposition approach by autonomous blocks with graphene nanostructures and virtual Floquet channels (FABs), the scattering parameter |S21| of THz polarizer, based on the periodic 2D structures of rectangular graphene nanoribbons on SiO2 substrate, depending on the frequency and angle of incidence of TEM-wave for different values of the chemical potential was calculated at the frequency range 24-32 THz.
Conclusions. The results of mathematical modeling show that upon changing the orientation of the electric field E of incident TEM-wave from parallel to normal to the nanoribbons the transmission coefficient |S21| decreases, and in the stop band at the resonant THz frequency the periodic 2D structures of rectangular graphene nanoribbons can be considered as the THz polarizer. The S-parameters of the polarizers can be controlled by modifying the value of the chemical potential through changing the external bias electric field.

Key words

graphene, nanoribbons, Kubo formula, chemical potential, transmission coefficient, terahertz frequency range.

Download PDF
References

1. Sorokin P. B., Chernozatonskiy L. A. Uspekhi fizicheskikh nauk [Progress of physical sciences]. 2013, vol. 183, no. 2, pp. 113– 132.
2. G. Liu, Y. Wu, Y. M. Lin, D. B. Farmer, J. A. Ott, J. Bruley, A. Grill, P. Avouris, D. Pfeiffer, A. A. Balandin, C. Dimitrakopoulos. ACS Napo, 6, 6786 (2012)
3. .L.Jiao, L.Xie, H.Dai. Napo Res, 5, 292 (2012)
4. P.Ruffieux, J.Cai, N.C.Plumb, L.Patthey, D.Prezzi, A.Ferretti, E.Molinari, X.Feng, K.Mullen, C.A.Pignedoli, R.Fasel. ACS Napo, 6, 6930 (2012)
5. Liang, Y.S.Jung, S.Wu, A.Ismach, D.L.0lynick, S.Cabrini, J.Bokor. Napo Lett., 10, 2454 (2010)
6. H.R.Gutierrez, U.J.Kim, J.P.Kim, P.C.Eklund. Napo Lett., 5, 2195 (2005)
7. .Cai, P.Ruffieux, R.Jaafar, M.Bieri, T.Braun, S.Blankenburg, M.Muoth, A.P.Seitsonen, M.Saleh, X.Feng, K.Mullen, R.Fasel. Nature (London), 466, 470 (2010)
8. Y.Wu, Y.M.Lin, A.A.Bol, K.A.Jenkins, F.Xia, D.B.Farmer, Y.Zhu, P.Avouris. Nature (London), 472, 74 (2011)
9. Prospects of Graphene Transistors for High-Frequency Electronics – Printed Electronics World. Available at: http://www.printedelectro-nicsworld.com/articles/prospects-ofgraphene-transistors-for-high-frequency-electro nics-00005226.asp
10. Hanson G. W. J. of Appl. Phys. 2008, vol. 103, p. 064302.
11. Nikol'skiy V. V. Dekompozitsionnyy podkhod k zadacham elektrodinamiki [Decomposition approach to problems of electrodynamics]. Moscow: Nauka, 1983, 298 p.
12. Nikol'skiy V. V. Elektrodinamika i rasprostranenie radiovoln [Electrodynamics and wave propagation]. Moscow: Nauka, 1973, 608 p.
13. .Nikol'skiy V. V. Sbornik nauchno-metodicheskikh statey po prikladnoy elektrodinamike [Collected scientific and methodological articles on applied electrodynamics]. Moscow: Vysshaya shkola, 1977, pp. 4–23.
14. Golovanov O. A. Radiotekhnika i elektronika [Radio engineering and electronics]. 1990, vol. 35, no. 9, pp. 1853–1863.
15. Golovanov O. A. Radiotekhnika i elektronika [Radio engineering and electronics]. 2006, vol. 51, no. 12, pp. 1423–1430.
16. Gao W., Shu J., Qiu C. and Xu Q. ACS Nano. 2012, vol. 6 (9), pp. 7806–7813.

 

Дата создания: 06.10.2015 15:17
Дата обновления: 20.10.2015 15:40